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ABSTRACT: Microphysical processes within mixed-phase convective clouds can have cascading impacts on cloud prop-

erties and resultant precipitation. This paper investigates the role of microphysics in the lake-effect storm (LES) observed

during intensive observing period 4 of theOntarioWinter Lake-effect Systems field campaign. Amicrophysical ensemble is

composed of 24 simulations that differ in the microphysics scheme used (e.g., Weather Research and Forecasting Model

microphysics options or a choice of two bulk adaptive habit models) along with changes in the representation of aerosol and

potential ice nuclei concentrations, ice nucleation parameterizations, rain and ice fall speeds, spectral indices, ice habit

assumptions, and the number of moments used for modeling ice-phase hydrometeors in each adaptive habit model. Each of

these changes to microphysics resulted in varied precipitation types at the surface; 15 members forecast a mixture of snow,

ice, and graupel, 7 members forecast only snow and ice, and the remaining 2 members forecast a combination of snow, ice,

graupel, and rain. Observations from an optical disdrometer positioned to the south of the LES core indicate that 92%of the

observed particles were snow and ice, 5% were graupel, and 3% were rain and drizzle. Analysis of observations spanning

more than a point location, such as polarimetric radar observations and aircraft measurements of liquid water content,

provides insight into cloud composition and processes leading to the differences at the surface. Ensemble spread is con-

trolled by hydrometeor type differences spurred by processes or parameters (e.g., ice fall speed) that affect graupel mass.

KEYWORDS: Cloudmicrophysics; In situ atmospheric observations; Remote sensing; Ensembles; Cloud resolvingmodels;

Lake effects

1. Introduction

Parameterized physical processes within numerical weather

prediction (NWP) models have varied forecast impacts, which

have been investigated via sensitivity studies and/or ensembles.

Many studies have investigated the usefulness and skill of en-

sembles derived from initial condition uncertainty (IC; Golding

et al. 2016), physics uncertainty (PHYS), or a combination of both

(IC-PHYS; e.g., Stensrud et al. 2000; Fujita et al. 2007; Golding

et al. 2016). PHYS ensembles can include uncertainties in one or

many processes in the land surface, the boundary layer, radiative

transfer, cloud microphysics, and cumulus parameterizations.

Although results can differ depending on the season (e.g., warm vs

cold; Stensrud et al. 2000; Meng and Zhang 2007), some PHYS

ensembles provide a larger envelope of solutions (i.e., forecast

spread) encompassing atmospheric variability, compared to IC

ensembles.An ensemble forecast that is reliable and encompasses

atmospheric variability should randomly sample from the same

probability density function (PDF) as the observation (Hamill

2001). Interestingly, IC-PHYS ensembles surpass the capabil-

ities of individual ensembles due to representation of different

portions of the atmospheric PDF; IC-PHYS returns the largest

forecast spread in thermodynamic variables while also following

closest to observations (Fujita et al. 2007). However, situations

may arise where model error leads to forecast biases, potentially

skewing the range of forecast possibilities.Meng andZhang (2007)

demonstrated that a combination of cumulus schemes both with

and without PHYS model error strengthens ensemble perfor-

mance due to reduced model biases. Saslo and Greybush (2017)

used an ensemble-based framework focused on IC and boundary

condition (BC) perturbations, different combinations of micro-

physics and boundary layer schemes, and data assimilation within

lake-effect storm (LES) forecasts downwind of Lake Ontario.

Changes in ICs andBCsaswell as various environmental variables,

such as low-level wind, largely influenced precipitation forecasts.

The PHYS ensembles suggested that different physics scheme

choices can lead to varied precipitation intensities.

Considerable uncertainties surrounding physics represen-

tation in NWP currently exist, specifically when considering

precipitation on themeso and synoptic scales and hydrometeor

phases (i.e., liquid and ice). Liu et al. (2011) found that plan-

etary boundary layer, land surface, and radiative transfer

schemes only weakly influenced cold-season precipitation

forecasts, while microphysics schemes provided considerable

uncertainty. This partially stems from an underdeveloped ob-

servational understanding of microphysics due to the innate dif-

ficulty with such investigations, which affects the representative

parameterizations. Liu et al. (2011) noted that inconsistencies are

Supplemental information related to this paper is available at the

Journals Online website: https://doi.org/10.1175/JAS-D-20-0045.1.

Corresponding author: Lauriana C. Gaudet, lgaudet@albany.edu

MAY 2021 GAUDET ET AL . 1607

DOI: 10.1175/JAS-D-20-0045.1

� 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 03:38 PM UTC

https://doi.org/10.1175/JAS-D-20-0045.1
mailto:lgaudet@albany.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


even evident in the implementation of the same exact parame-

terizations, such as the Bigg (1953) method to represent the

freezing of rain, among different schemes. For example, wide-

ranging differences among precipitation efficiencies (e.g., crea-

tion and growth of graupel) in mesoscale winter storms were

discovered when comparing multiple microphysics schemes

(Reeves and Dawson 2013; McMillen and Steenburgh 2015).

These and many other studies have been conducted solely in-

vestigating precipitation sensitivity to physics choices in NWP.

Identification of sensitivities to user-defined choices within mi-

crophysical models by means of both single and multimodel

ensembles is integral to build upon understanding of such pro-

cesses and their effects on precipitating systems, as well as to

recognize which processes produce forecast uncertainty.

This paper explores the ensemble spread produced when using

different microphysics, either by varying schemes (e.g., Morrison

et al. 2009; Thompson et al. 2008) or by altering a parameter or

process physics (e.g., vapor deposition rate) within a microphysics

scheme. It also builds upon the exploration of LES quantitative

precipitation forecast (QPF) sensitivity to the choice of ice nucle-

ation parameterization and subsequent spherical or nonspherical

mode of growth in Gaudet et al. (2019). Only slight forecast dif-

ferences existed among the QPF magnitude, but there were in-

triguing changes in the hydrometeor distribution and spatial QPF

that open the door for further investigation in this paper.

The remainder of this paper is organized as follows. The

microphysical models used herein are described in section 2

and details regarding the simulations within the ensemble in

section 3. The following sections address the observations and

ensemble forecast of the Ontario Winter Lake-effect System

(OWLeS; Kristovich et al. 2017) intensive observing period 4

(IOP4) in a synergistic manner. Section 4 includes an overview

of the LES mesoscale characteristics and associated precipi-

tation. A breakdown of the precipitation type and its influence

on the LESmorphology is in section 5. Section 6 brings focus to

the cloud microphysical features, aiming to provide context on

to which ensemble members, if any, fully capture the evolution

of IOP4. Finally, section 7 closes with a discussion of the

strengths and weaknesses of the ensemble for this case.

2. Model descriptions

a. Adaptive habit microphysics model

The adaptive growth of nonspherical ice crystals in varying en-

vironmental conditions is tracked in the three-moment, bulk

adaptive habit microphysics model (AHM; Harrington et al.

2013a) by means of vapor diffusional mass growth and the mass

redistribution hypothesis (Chen and Lamb 1994a). The AHM

considers ice crystal habits to be spheroidal, thereby resulting in

either prolate spheroids (i.e., columnar ice) or oblate spheroids

(i.e., platelike ice) when nonspherical growth freely evolves.

Spherical growth of crystals is forced when the temperature-

dependent inherent growth ratio, which describes the distribu-

tion of mass among the major and minor crystal dimensions, is set

to one. Crystal nucleation can be represented by either conden-

sation anddeposition freezing (Meyers et al. 1992) or condensation

and immersion freezing (DeMott et al. 2015), as these heteroge-

neous freezing modes are currently understood to contribute the

greatest pristine number concentrations within clouds (Kanji et al.

2017). The AHM has been used to investigate mixed-phase cloud

processes in both ideal and realWeatherResearch andForecasting

(WRF)Model cases (Sulia et al. 2014; Sulia and Kumjian 2017a,b;

Jensen et al. 2018; Gaudet et al. 2019; Sulia et al. 2020).

b. National Taiwan University microphysics model

Like theAHM, the three-moment National TaiwanUniversity

(NTU) model allows for the evolution of ice crystal habit fol-

lowing the parameterization of Chen and Lamb (1994a). It also

allows for snow shape to vary, with the assumption that snow is an

oblate spheroid. The NTU model describes habit with a single

variable, the volume-weighted aspect ratio (Tsai and Chen 2020).

Bulk volume and mass are tracked separately to provide a vari-

able bulk density for ice, snow, and graupel. Additionally, the

calculation of fall speeds and collision efficiencies depend on

the shape and density of ice and snow (Tsai and Chen 2020). The

default setup of the NTU model (NTU-DEF) is outlined as fol-

lows. The initial cloud condensation nuclei (CCN) distribution is

homogeneous in the horizontal and decreases exponentially in the

vertical with a scale height of 3.57 km except for the lowest three

sigma levels, or below 850hPa (Cheng et al. 2007, cf.). CCN

composition is assumed to be ammonium sulfate, while its size

distribution is trimodal lognormal of clean continental type

(Whitby 1978). The primary production of ice crystals follows

DeMott et al. (2010) for deposition and condensation-freezing

nucleation with a given potential ice nuclei (IN) number con-

centration of 400L21 (Georgii and Kleinjung 1967; Chen and

Lamb 1994b). Also, raindrop fall speed calculation matches that

of Chen and Liu (2004), and the representation of crystal prop-

erties (aspherical shape and variable apparent density) is based on

the bulk parameterization of adaptive growth habit together with

the triple-moment bulk closure method (Chen and Tsai 2016).

The fall speeds for solid-phase hydrometeors (pristine ice, snow

aggregates, graupel, and hail) follow the theoretical parameteri-

zation of Mitchell and Heymsfield (2005).

c. Publicly available WRF microphysics

The WRF Model version 3.7.1 includes several microphysics

schemes. The following schemes are used herein: Purdue Lin

(LIN; Chen and Sun 2002), WRF single-moment 6-class (WSM6;

Hong and Lim 2006), Goddard (GCE; Tao et al. 1989, 2016),

WRF double-moment 6-class (WDM6; Lim and Hong 2010),

Morrison two moment (M2M; Morrison et al. 2009), Milbrandt–

Yau double moment (MY2; Milbrandt and Yau 2005a,b),

Thompson (THOM; Thompson et al. 2008), and CAM V5.1

two-moment 5-class (CAM; Eaton 2011). The numerous

combinations of physical process representation within these

schemes makes it difficult to attribute a specific physical process

to the largest discrepancy in a forecast, if the response is indeed

linear. The aim of this work is not this type of attribution, but

instead to understand the underlying variability derived from

microphysics during a mesoscale winter precipitating event.

3. Data and methodology

Gaudet et al. (2019) investigated the LES sensitivity to ice nu-

cleation andgrowthmodeusing theAHM.This assemblage is used
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as an initial framework to better identify which processes and pa-

rameters contribute to forecast variations. Analyzing an event

through multiple simulations using various physics schemes is

considered to be a multiphysics ensemble approach. As such,

the 24-member ensemble used herein follows other similar

multiphysics ensemble investigations in which the total num-

ber of members ranges from 8 to 48 (Jankov et al. 2017; Imran

et al. 2018; Yang et al. 2019).

a. Microphysical ensemble composition

In addition to using publicly available WRF microphysics

modules, potential sources of uncertainty including ice nucleation,

mode of ice crystal growth, aerosol concentration, potential IN

concentration, fall speeds, and spectral indices were isolated and

changed within the AHM and NTU to build a microphysical en-

semble. These were chosen based on existing nucleation and

growth sensitivities identified in Gaudet et al. (2019) and a pre-

specified ensemble from NTU. The 24 ensemble simulations and

their associated modeling options diverging from the standard

namelist are summarized in Table 1. Members 1–4 are referred to

as AHM, 5–12 as public, and 13–24 as NTU in the remainder of

this paper. Public members were used without any modification.

AHM ensemble member perturbations use a combination of

Meyers et al. (1992) (MEY92) or DeMott et al. (2015) (DEM15)

ice nucleation parameterization with spherical (AHM-MEY92S,

AHM-DEM15S) or nonspherical (AHM-MEY92H, AHM-

DEM15H) ice growth. Nonspherical ice growth is calculated

and tracked in the AHM through volume-weighted major and

minor crystal axis lengths and ice crystal bulk density. A

thorough description of the AHM and nucleation parameteri-

zations is provided inGaudet et al. (2019). TheNTUensemble is

built from individual changes to the various representations of

specific microphysical processes and parameterizations within

NTU-DEF. Initial CN distributions are separately changed

to marine and polluted types in NTU-MAERO and NTU-

PAERO, respectively (Whitby 1978, cf.). The given potential

IN concentration is 4 L21 in NTU-INL and 40 000 L21 in NTU-

INH. Raindrop fall speed calculation uses the empirical rela-

tion y 5 841.997D0.8 in NTU-RFS (Liu and Orville 1969).

Variations of spectral index (a, shape parameter of the size

spectrum) are diagnosed from size in NTU-DSI or fixed as

constants (a 5 3 for pristine ice, a 5 0 for other hydrometeor

categories) in NTU-FSI, which employs a bulk two-moment

method. Ice fall speed calculations are replaced with empirical

size relations such as y 5 aDb in NTU-FRFS, where a and b are

constants, y is the fall speed of cloud ice, and D is the spherical

equivalent diameter. Pristine ice and aggregate shape is assumed

spherical in NTU-SPH; this assumption is combinedwith the bulk

two-moment method in NTU-2SPH. Finally, traditional param-

eterizations of crystal properties (spherical with fixed density) and

fall speed calculations (empirical relations) together with the bulk

two-moment method define NTU-2TRAD.

Each ensemble member was run with WRFv3.7.1 for 12–

17 December 2013, allowing for sufficient spinup time before

the LES observed during OWLeS IOP4 initiated around

1800 UTC 15 December and dissipated around 0900 UTC

16December. All LES simulations are run with three, two-way

nested domains centered at 43.6058N, 76.7218W, seen in Fig. 1a,

TABLE 1. Reference table of all members comprising the UA-NTU ensemble with their associated name and change, if any, to their

respective microphysics code. If applicable, the WRF microphysics option is provided for all public members in parenthesis in the setup

column.

No. Name Reference Setup (option)

1 AHM-MEY92H Harrington et al. (2013a,b) Nonspherical ice with Meyers

2 AHM-MEY92S Harrington et al. (2013a,b) Spherical ice with Meyers

3 AHM-DEM15H Harrington et al. (2013a,b) Nonspherical ice with DeMott

4 AHM-DEM15S Harrington et al. (2013a,b) Spherical ice with DeMott

5 M2M Morrison et al. (2009) Semi-2M(10)

6 CAM Eaton (2011) Semi-2M(11)

7 GCE Tao et al. (1989, 2016) 1M(7)

8 LIN Chen and Sun (2002) 1M(2)

9 MY2 Milbrandt and Yau (2005a,b) 2M(9)

10 THOM Thompson et al. (2008) Semi-2M(28)

11 WDM6 Lim and Hong (2010) Semi-2M(16)

12 WSM6 Hong and Lim (2006) 1M(6)

13 NTU-2SPH Tsai and Chen (2020) Spherical ice crystal with 2M

14 NTU-SPH Tsai and Chen (2020) Spherical ice crystal

15 NTU-FSI Tsai and Chen (2020) Fixed spectral index

16 NTU-FRFS Tsai and Chen (2020) Fixed relations of fall speed

17 NTU-DEF Tsai and Chen (2020) Default

18 NTU-RFS Tsai and Chen (2020) Raindrop fall speed

19 NTU-INH Tsai and Chen (2020) High potential IN concentration 40 000 L21

20 NTU-INL Tsai and Chen (2020) Low potential IN concentration 4 L21

21 NTU-MAERO Tsai and Chen (2020) Marine aerosol

22 NTU-PAERO Tsai and Chen (2020) Polluted aerosol

23 NTU-DSI Tsai and Chen (2020) Diagnosed spectral index

24 NTU-2TRAD Tsai and Chen (2020) Traditional parameterization
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varying in horizontal grid spacing from 25 km (domain 1, D01),

5 km (domain 2, D02), and 1 km (domain 3, D03), and 30

nonlinear vertical levels, extending to about 15 km. Other than

microphysics, all remaining physics namelist options are out-

lined in Table 2.

b. Machine comparison

The University at Albany, State University of New York

(SUNY, UA), and NTU simulated WRF on two separate

machines to produce the ensemble members listed in Table 1.

UA simulated members 1–5 while NTU simulated both

member 5 and members 13–24. Member 5 was intentionally

run on both UA and NTU machines to perform a quantitative

comparison and ensure that any differences in the following

analysis are solely a result of microphysical perturbations,

rather than machine hardware/software differences. A Spearman

correlation coefficient of 0.9985 with a p value of 0 indicated no

statistically significant difference between member 5 QPFs in

D03. This specific test does not assume a normal data distribution.

Additionally, the Spearman correlation coefficients com-

puted for eachmassmixing ratio inD03 is as follows: 0.98 for ice,

0.97 for snow, 0.48 for graupel, 0.97 for cloud, and 0.97 for rain

mass mixing ratios. The data in Fig. 2 show the differences be-

tween the UA and NTU member 5 mixing ratios (M2MNTU 2
M2MUA) at each grid point in D03 every 3 h from 1200 UTC

15 December to 1200 UTC 16 December 2013. Figure 2 dem-

onstrates that snow and cloud mass differences dominate, while

ice and rain differences have lesser contributions. On average,

these discrepancies are on the order of 1% of the total forecast

for ice and rain, 0.1% for cloud, and 0.01% for snow. The only

exception is graupel, with differences ranging between 14.8%

and 17.4%. A possible explanation of this relatively large dif-

ference is the low occurrence (zeroth moment) of graupel in

M2M (as judged by Fig. 8).While forecasts of the samemember

are not compared again in this paper, readers should be aware

that there is variation in the graupel forecasts. All hydrometeor

difference distributions center around zero, implying that a

balance exists between the number of grid points in D03 fore-

casting more or less liquid or frozen mass relative to the NTU-

simulated member 5. Since the differences in the remaining

hydrometeor mixing ratios vary at each 3-h output and do not

increase or decrease throughout time, it is sufficient to run the

simulations on separate machines.

c. Observational and validation datasets

Several observational datasets are available through the

National Center for Atmospheric Research (NCAR) Earth

Observing Laboratory (EOL) for OWLeS. Table 3 includes

the instruments, their deployment locations (Fig. 1b), and

observation types used to analyze IOP4. Hourlymeasurements

of snow-water liquid-equivalent (SWLE) precipitation and 6-h

snow depth were recorded at two stations, North Redfield

(Steenburgh et al. 2014a) and Sandy Creek (Steenburgh et al.

2014b), east of Lake Ontario. To provide a more spatially ex-

tensive accumulation dataset, a radar-derived and rain gauge-

corrected 24-h quantitative precipitation estimate (QPE) valid

FIG. 1. (a) Nested domains used in WRF ensemble and (b) domain 3 with location of OWLeS IOP4 deployment

sites forMicroRain Radars (circles) at Sandy Island Beach (SIB), Sandy Creek (SC), NorthRedfield (NR), and the

upper plateau (UP); MIPS instrument suite (star); and Doppler on Wheels 7 (DOW7; triangle). Topography is

contoured every 50m beginning at 100m, with the Tug Hill Plateau (THP) annotated at the highest eleva-

tion shown.

TABLE 2. Reference table of the physical scheme setup for WRF

simulations discussed in this prospectus.

Physical process Scheme Reference

Longwave radiation RRTMG Iacono et al. (2008)

Shortwave radiation Dudhia Dudhia (1989)

Boundary layer YSU Hong and Noh (2006)

Cumulus (only D01, D02) Kain–Fritsch Kain (2004)
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at 1200 UTC 16 December 2013 was obtained from the

Advanced Hydrologic Prediction Service (AHPS; National

Weather Service 2020). As these data are not directly mea-

sured at the surface, the magnitude of the QPE is relatively

uncertain. Therefore, theAHPS data are only used for forecast

location validation.

Center for Severe Weather Research (CSWR) Doppler on

Wheels (DOW;Wurman 2001) polarimetric X-band radar data

provide observations to infer microphysical information about

the LES. Out of the three DOWs deployed during IOP4,

DOW7 provided the best coverage of the LES, especially over

Lake Ontario. As such, only the DOW7 data are used in this

paper. These are supplemented by operational KTYX (NOAA

2014) 0.58 plan position indicator (PPI) scans. FourMicro Rain

Radars (MRRs; Steenburgh et al. 2014c) were deployed east of

Lake Ontario allowing for analysis of LES structure and

characteristics with increasing inland distance. These raw data

were processed with the Maahn and Kollias (2012) algorithm

and averaged to a time resolution of 60 s, as in Minder et al.

(2015). The Mobile Integrated Profiling System (MIPS) was

also operational during OWLeS, providing data used herein

from the Particle Size Velocity (PARSIVEL) optical dis-

drometer (Phillips and Knupp 2014a) and the X-band profiling

radar (XPR; Phillips and Knupp 2014b). The disdrometer was

designed to measure rain characteristics and therefore is built

on assumptions such as sphericity for particles , 1mm. While

it can and has been used to characterize snow, these assump-

tions can cause data issues particularly for particles with a

diameter , 1mm (Yuter et al. 2006). MIPS was deployed at

SUNYOswego on the southern shore of LakeOntario (Fig. 1b,

star) due to the likelihood it would detect the LES convective

core. However, the storm developed north of the operational

forecast location, leaving theMIPS instruments too far south to

observe the LES convective core for a majority of its lifetime.

As such, ensemble data were averaged over a 20 km 3 20 km

area surrounding the MIPS location to mitigate any simulated

cloud location issues within comparisons of the ensemble and

MIPS observations. Finally, the University of Wyoming King

Air (UWKA) flew through the LES in both across and along

band directions. Aircraft measurements of liquid water content

(LWC) were provided by the Gerber Particle VolumeMonitor

(PVM; University of Wyoming Flight Center 1977).

4. Precipitation observations and forecasts

Adeparting cold front associated with a low pressure system

off the New England coast introduced an Arctic air mass over

the eastern Great Lakes. Strong lake-effect convection ensued

over Lake Ontario beginning at 1800 UTC 15 December 2013

and continued until about 0900 UTC 16 December 2013,

dumping roughly 18mm of SWLE near the Tug Hill Plateau

(Fig. 1b), according to the AHPS estimates. A thorough de-

scription of the associated synoptic and mesoscale features is

available in Gaudet et al. (2019). An in-depth analysis of the

OWLeS IOP4 observations and the ability of the ensemble to

accurately simulate the LES properties leading to the precip-

itation forecast follows.

a. Assessment of ensemble forecast spread and error

Spearman correlation coefficients were calculated between

each ensemble member and the remaining 23 members for the

24-h QPF throughout D03 valid at 1200 UTC 16 December

2013 (Fig. 3). The smaller the correlation, the greater potential

difference in QPF with an increased likelihood that a member

substantially increases the ensemble spread. In Fig. 3, all NTU

members except for NTU-FRFS and NTU-2TRAD are clus-

tered toward higher correlation coefficients, indicating that

they are relatively similar to other member forecasts. Since

these NTU members comprise half of the ensemble, they are

effectively being compared to each other. AHM members us-

ing DEM15 are also clustered but those using MEY92 provide

FIG. 2. Violin plot of mass mixing ratio (q) differences (g kg21)

betweenNTU- andUA-simulatedmember 5 for ice (qi), snow (qs),

graupel (qg), cloud (qc), and rain (qr) mixing ratios at each grid

point in D03 and at 3-h intervals during the time period of

1200 UTC 15 Dec to 1200 UTC 16 Dec 2013. The median (hori-

zontal white line) and distribution of differences (shading) is pro-

vided by a kernel density plot for each mass mixing ratio. The

vertical lines of each plot represent the range of differences.

TABLE 3. Instruments deployed during OWLeS IOP4 that provided data used for analysis in this paper.

Instrument Location Details Observation-type used

DOW7 Fig. 1b, triangle PPI scans Polarimetric

MRR Fig. 1b, circles Vertically pointing Effective reflectivity, vertical velocity

XPR MIPS, Fig. 1b, star Surface Effective reflectivity, radial velocity

PARSIVEL disdrometer MIPS, Fig. 1b, star Surface Particle size and velocity

UWKA PVM Fig. 13b Aircraft Liquid water content
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greaterQPF differences. Additionally, decreases in correlation

coefficient associated with the ice nucleation parameterization

changes in the AHM point toward IN concentration poten-

tially controlling some forecast variation. Since correlation

coefficient is a proxy for QPF differences, any disparity in

correlation coefficient between the AHM-MEY92 and AHM-

DEM15members and the remaining ensemble members stems

from the choice of nucleation parameterization. This choice

ultimately alters the forecast enough to cause differences be-

tween the median correlation coefficient in both AHM-

MEY92 members (0.86) and both AHM-DEM15 members

(0.92). Finally, the publicly available microphysics schemes in

WRF, such as LIN and WDM6, have some of the lowest cor-

relation coefficients, indicating that a change in microphysics

scheme may elicit greater ensemble spread than a physical

parameter change within the AHM or NTU. This is not a

surprising result as physical process representation varies ex-

tensively from one scheme to another, making it difficult to

pinpoint the root cause for the spread. Smaller correlation

coefficients increase forecast spread, which helps identify po-

tential forecast uncertainties and widen the envelope of event

forecasts, and also indicate sensitivity to microphysics; identi-

fying that sensitivity is the purpose of this study. This ensemble

provides enough variation to warrant an investigation into the

reasons driving those forecast differences.

To assess forecast accuracy during 1200 UTC 15December–

1200 UTC 16 December 2013, the hourly SWLE observations

at Sandy Creek and North Redfield, New York, were re-

sampled to 3-h accumulations and compared to each member’s

3-h (liquid-equivalent) QPF both qualitatively and quantitatively,

by use of a root-mean-square error (RMSE; Fig. 4) calculated

from eight observed and simulated values. A time series of ob-

servations and forecasts (not shown) indicates thatmost ensemble

members overestimate the precipitation at North Redfield before

the peak precipitation at 0600 UTC by as much as 5.0mm while

the opposite problem exists at Sandy Creek, underestimating by

as much as 6.3mm. At both locations, public members exhibit a

substantial forecast range (i.e., 1.1–9.6mm at Sandy Creek, 1.7–

14.5mm at North Redfield), AHM members tend toward a rel-

ativelymoderate forecast range (i.e., 5.0–10.7mmat SandyCreek,

8.6–16.3mm at North Redfield), and the NTU members provide

the greatest SWLE forecast (i.e., 6.5–14.8mm at Sandy Creek,

13.1–17.6mm at North Redfield), which matches best with the

observations at 0600 UTC 16 December (i.e., 15.0mm at Sandy

Creek, 14.7mm at North Redfield). The RMSE analysis mirrors

the preceding qualitative analysis. The closer to zero the RMSE,

the less the observations and forecasts deviate, while RMSE. 0

means that the QPF was either under or over the observed

amount. The RMSE values in Fig. 4 indicate a range of imper-

fection within the ensemble at both locations, ranging from 1.1 to

5.4mm at Sandy Creek and 0.4–4.6mm at North Redfield. Note

that themean absolute error (MAE) ranges from 0.71mm (NTU-

2SPH, 13) to 2.88mm (WSM6, 12) at Sandy Creek and 0.30mm

(MY2, 9) to 1.95mm (WDM6, 11) at North Redfield. At North

Redfield, the maximum RMSE and MAE are associated with

MY2 (9) and the minimum RMSE and MAE are from WDM6

(11). Although the same is not true at Sandy Creek, the members

with maximum (WDM6, 11) and minimum RMSE (NTU-2SPH,

FIG. 3. Spatial correlation coefficients between 24-h QPFs valid at 1200 UTC 16 Dec 2013 of each ensemble member in D03. The

correlation is annotated and shaded by color for each ensemble member on both axes. AHM, public, and NTU members are grouped

together on both axes by the use of horizontal and vertical white space.
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13) only marginally differ from the members with the maximum

and minimum MAE. A majority of NTU members and AHM-

DEM15H (3) have RMSE values lesser than the median and

lower quartile at both SandyCreek andNorthRedfield. The large

spread among publicmembers indicates a high uncertainty in bulk

microphysical treatments. Interestingly, NTU-FRFS (16) has

RMSE values on par with most AHM and public members at

both Sandy Creek and North Redfield. As introduced in

section 3a, NTU-FRFS replaces ice fall speed calculations with

empirical size relations, which signifies that simplifying this cal-

culation adversely impacts QPF error due to a mass flux change

toward the surface. At Sandy Creek, most NTU members best

forecast 3-hQPF (RMSEcloser to zero)while amajority of public

members are furthest from observations, which is a factor of

spatial forecast differences1 in the 3-h QPF among the ensemble

members. The distribution of RMSE at North Redfield is slightly

different; while NTU members provide relatively low RMSE

compared to almost all public members and both AHM-MEY

members (1 and 2), the lowest RMSE is from a public member,

MY2 (9). This analysis allows for the understanding of which

clusters of the ensemble lead to the greatest forecast error while

also exemplifying the spatial variability of ensemble verification

between Sandy Creek and North Redfield.

b. Spatial and temporal characteristics

The MIPS disdrometer (see Fig. 1b for location) indicated

upticks in precipitation intensity (Fig. 5a) ranging from 1 to

5mmh21 around 2215 and 2315 UTC 15 December, as well as

0100, 0200, 0330, and slightly before 0530 UTC 16 December,

which coincide with increases in reflectivity, ranging from 10 to

25 dBZ (Fig. 5b, stars). Precipitation intensifies slightly before

and immediately after 0600 UTC 16 December, peaking at

23.5mmh21. This is considerably larger than the preceding

intensity observations because the number of observed parti-

cles more than doubled and increased in diameter (not shown).

The precipitation intensity peak also coincides with a re-

flectivity maximum of 38.6 dBZ. Based on analysis of KTYX

0.58 PPI scans (Figs. 5c,d), the cloud band propagated south-

ward before 0600 UTC and brought with it large reflectivity

values and the sudden increase in heavy precipitation. Lighter

precipitation was observed earlier because the disdrometer

was sensing precipitation on the periphery of the quasi-zonal

convective core (Figs. 5c,d).

The 24-h QPE provided by the AHPS and the 24-h QPFs for

all ensemble members valid at 1200 UTC 16 December 2013

are presented in Fig. 6. Each member forecast captures LES

precipitation downwind (i.e., east) of Lake Ontario, with some

variance in latitudinal placement. Although the QPFs are

about double the AHPS observations (Fig. 6, upper left panel),

of which the validity is questionable (see Gaudet et al. 2019),

some agreement exists among all members as to the expected

magnitude of precipitation during IOP4. All AHM and NTU

FIG. 4. Root-mean-square error (RMSE; mm, gray) and mean absolute error (MAE; mm, light

orange) of SWLE precipitation between observations at Sandy Creek and North Redfield and

individual ensemble members from 1200 UTC 15 Dec to 1200 UTC 16Dec 2013. The interquartile

range is represented by each box, themedian is the horizontal linewithin the box, and the remainder

of the distribution is denoted by the lines extending from each box. Individual member RMSE and

MAE are overlaid as green, pink, and orange circles denoting AHM, public, and NTU members,

respectively. Annotated numbers correspond to the simulation number in Table 1.

1 Defined as the longitudinal and/or latitudinal differences rela-

tive to where the forecast field is located for each respective

ensemble member.
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members produce a thin band of precipitation southwest of the

main area of interest, which was not present in the observations.

The meanQPF (D03 average of all horizontal grid points) ranges

from 3.5mm (WDM6) to 6.1mm (NTU-FRFS); NTU and AHM

members generally produce greater mean precipitation than the

public members (Fig. 6). While the ensemble accurately forecasts

the location of maximum precipitation, the abundance of pre-

cipitation elsewhere reduces confidence that this ensemble is able

to completely represent IOP4. The following analyseswill provide

insight into the sources of ensemble forecast variation and how

those contribute to the inability to accurately forecast QPF.

During 1800 UTC 15 December–1200 UTC 16 December,

measurements of snow totaled 300mm (24mm SWLE) at

Sandy Creek and 420mm (22.5mm SWLE) at North Redfield.

The snow-to-liquid ratios (mmmm21) were 12.5 and 18.67

(within the climatological range in upstate New York; Baxter

et al. 2005), respectively, confirming that the accumulated

snow had a greater water content at Sandy Creek. So, the snow

accumulations increased and SWLE decreased slightly with

inland distance. From analysis of almost 30 additional OWLeS-

observed LES events, Minder et al. (2015) found that it was

common for these storms to become less convective and show

FIG. 5. (a) Intensity (mmh21) and (b) reflectivity (dBZ) derived by the MIPS disdrometer during the period of

2127–0700 UTC 16 Dec 2013. Vertical dashed green lines correspond to the 0.58 KTYX horizontal reflectivity

(dBZ) PPIs valid at (c) 0331:52 and (d) 0609:43 UTC 16 Dec 2013. The stars in (b) indicate the reflectivity en-

hancements associated with the increases in precipitation intensity at the following times: 2215 and 2315 UTC 15

Dec 2013 and 0100, 0200, 0330, and around 0530 UTC 16 Dec 2013. The black star in (c) and (d) indicates the

location of the disdrometer and other MIPS instruments.
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characteristics of a convective-to-stratiform transition with

increasing inland extent. Unsurprisingly, the MRR data also

suggest that such a transition may have also occurred in IOP4.

Contoured frequency with altitude diagrams (CFADs; Yuter

and Houze 1995) of effective reflectivity (Ze) normalized by

the number of observations taken by vertically pointingMRRs

deployed at Sandy Island Beach, Sandy Creek, North Redfield,

and the upper plateau during IOP4 are provided in Fig. 7. The

CFAD construction follows the detailed methodology of Minder

et al. (2015). Note that data with low observation counts (defined

as below the 5th percentile of the total counts at each site) are

not shown. Along with a general decrease in maximum re-

flectivity at all altitudes, the LES echo top lowers with

increasing distance inland (Figs. 7a–d), indicative of weakening

convection as upward vertical motion becomes less intense

(Figs. 7e–h). The negative tilt of the modal Ze with altitude in

all CFADs suggests either melting processes or a size increase

of particles detected by the MRRs within the LES (Minder

et al. 2015).As the subfreezing temperatures present throughout

the atmospheric column during IOP4 would not allow for

considerable melting, the tilt of the modal Ze is likely the

product of highly efficient hydrometeor growth processes.

At Sandy Island Beach and Sandy Creek, the modalZe in the

lowest 1 km of the cloud is .20 dBZe and decreases to about

15dBZe at North Redfield and upper plateau. The larger modal

Ze at lake-proximate locations likely corresponds with an

FIG. 6. The 24-hmodel QPF (mm) inD03, valid at 1200UTC 16Dec for each ensemblemember outlined in Table 1. Respective mean and

maximum QPF (mm) are provided above each panel. (top left) AHPS QPE are presented for reference.
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increase in particle density leading to a larger dielectric constant,

hydrometeor number concentration, hydrometeor size, or a

combination of these (Figs. 7a–d). There is likely a lower con-

centration of hydrometeors with less LWC at the easternmost

locations due to their shifted frequency distributions to smaller

Ze. Additionally, increases in particle density may be supported

by increased LWC; an east–west UWKA flight leg at an average

altitude of 1.68km confirms that while there is greater variability

in LWC measurements near Lake Ontario, LWC generally de-

creases with increasing distance from the lake (not shown). This

corroborates the manual snow observations: a greater amount of

SWLE was observed at Sandy Creek than at North Redfield,

meaning that the densities of frozen hydrometeors were greater

and/or more cloud liquid water was present at Sandy Creek, as

evidenced by the large frequency of highZe (Fig. 7b).Meanwhile,

precipitation processes were efficient at North Redfield due to a

greater observed snow accumulation with a relatively shallow

vertical cloud extent and decreased modal Ze (Fig. 7c).

Further, Figs. 7e–h highlight the 5th- and 95th-percentile

Doppler radial velocities2 (i.e., hydrometeor vertical motion)

observed by each MRR throughout the vertical extent of the

LES. The intensity of the hydrometeor vertical motion de-

creases with increasing inland extent. The prevalent upward

hydrometeor motion coupled with the direct moisture source

at locations closest to Lake Ontario may sustain a greater su-

persaturation and particle residence time in the cloud system,

resulting in greater particle growth and density changes via

deposition, aggregation, and/or riming. Since riming would

increase particle density and thereby downward hydrometeor

motion, it is postulated that riming led to the notable difference

FIG. 7. CFADs of (a)–(d) effective reflectivity (dBZe) and (e)–(h) Doppler radial velocity (m s21) measured by MRRs from

1800 UTC 15 Dec to 0630 UTC 16 Dec 2013 at (a),(e) Sandy Island Beach, (b),(f) Sandy Creek, (c),(g) North Redfield, and (d),(h)

the upper plateau in New York. The beige shading at the bottom of each panel indicates the terrain height at each site. The bin

sizes for the reflectivity and Doppler radial velocity CFADs at each site are 200 m 3 1 dBZe and 200 m 3 0.5 m s21, respectively,

where the vertical spacing is 200 m. The dashed lines on each panel are the 5th and 95th percentile of the (a)–(d) reflectivity and

(e)–(h) radial velocity at each height.

2 Here, radial velocity as detected by the MRR is defined as the

Doppler velocity contributed to by both hydrometeors and air

motions, meaning that situations could arise where the hydrome-

teors and air motions are moving in opposing directions.
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in this motion between the near-lake Sandy IslandBeachMRR

observations (Fig. 7e) and those at the upper plateau (Fig. 7h).

Analysis of NTU members (not shown) support this hypoth-

esis, as graupel accretion rates among the members increase

from the upper plateau to Sandy Creek by 58.2%, but then

decrease slightly by 5.3% at Sandy Island Beach; despite that

reduction, the accretion rate at Sandy Island Beach (3.37 3
1029 kg kg21 s21) surpasses that at upper plateau (2.25 3
1029 kg kg21 s21). While graupel density differences of ,1%

do not sufficiently support differences in precipitation accu-

mulation at the surface, the accretion increases do provide

support to these differences. Further, NTUmember hail (large

graupel that exceeds the Schuman–Ludlum limit during

growth; Tsai and Chen 2020) mass-weighted fall speeds are

299% greater at lake-proximate locations. Due to these ef-

fects, spatial characteristics of QPF also depend on proximity to

Lake Ontario, as this can control the vertical extent of the LES

and its convective intensity, which in turn influences hydrome-

teor growth and sedimentation.

5. Analysis of precipitation type

Ensemble members can be grouped into three subsets based

on precipitation types accumulating at the surface (Fig. 8)

during the 24-h period ending 1200 UTC 16 December: snow

and ice (SI); snow, ice, and graupel (SIG); and snow, ice,

graupel, and rain (SIGR). An ensemble member is placed

into a group if at least 10% of the D03-averaged accumulation

is attributed to any of these precipitation types. Seven mem-

bers predict SI (AHM-MEY92H, AHM-MEY92S, M2M,

CAM, THOM, WDM6, and NTU-FRFS), 15 forecast SIG

(GCE, LIN, MY2, WSM6, all NTU members except for

NTU-FRFS), and two predict SIGR (AHM-DEM15H,

AHM-DEM15S). Autoconversion of cloud droplets to rain

andmelting of ice crystals at any near-surface and in-cloud grid

point where the temperature is above freezing are sources of

rain in SIGR simulations.

a. Ensemble representation of graupel processes

As with other ice-phase hydrometeors, there are several

differences in how each of these microphysics models repre-

sent the same graupel production or growth processes, if they

are represented at all. CAM is the only member that does not

model graupel. Parameterizations used to represent certain

physical processes, such as the initiation and growth of graupel,

and the manner in which they were implemented into the

schemes can largely influence graupel production (Liu et al.

2011; Reeves and Dawson 2013; McMillen and Steenburgh

2015). First, there are differences in the graupel particle size

distribution (PSD) intercept parameter: LIN, WSM6, WDM6,

and GCE assign a constant value (4.0 3 104m24 in LIN and

4.0 3 106m24 in WSM6, WDM6, and GCE), whereas M2M,

MY2, THOM, and all AHM and NTU members calculate a

value that is based on the graupel mixing ratio and number

concentration, in addition to cross-sectional area in the NTU

members. Additionally, there are many potential graupel

sources, including riming, the freezing of rain, and various

combinations of collection between frozen hydrometeors as

well as between frozen and liquid hydrometeors. There are

criticisms of how these processes are coded within the micro-

physics models, the efficiency of the collection processes, and if

some processes (e.g., collection of snow by graupel) should

even be included within the graupel production terms (Liu

et al. 2011). MY2 imposes a threshold for conversion of snow

to graupel that is different than the other ensemble members;

the conversion only occurs when the snow riming rate is at

least 3 times greater than the snow deposition rate (Milbrandt

and Morrison 2013). THOM, forecasting 0.55% of its QPF

as graupel, allows the freezing of rain to contribute to either

cloud ice or graupel, depending on the size of the rain

FIG. 8. Bar plot of 24-h D03-average QPF (mm) for each ensemble member, valid at

1200 UTC 16 Dec 2013. The contribution of snow and ice, rain, and graupel in each QPF are

represented by turquoise, purple, and green bars, respectively. Note that these bars are stacked

and not accumulating, and so where the bar begins relative to where it ends must be considered

when determining the magnitude.
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(Thompson et al. 2008). AHM members add all frozen rain

mass to cloud ice, whereas LIN, WSM6, WDM6, M2M, MY2,

GCE, and NTU members add it to graupel. The only member

that includes collection of snow by graupel is LIN. All mem-

bers include collection of rain by snow, but THOM does not

instantly convert rain to graupel.

The combination of a low graupel PSD intercept param-

eter, all frozen rain converted to graupel, the inclusion of

graupel and snow collisions, and highly efficient rain and

snow collisions resulted in the considerable graupel pro-

duction accounting for 87.6% of QPF in LIN. NTU-FRFS

has slower ice fall speeds, which consequently leads to

considerably less graupel production through lessened riming

processes. Therefore, the riming efficiency from either the

collision efficiency or the fall speed may be too high, as they

lead to very active graupel production in all other NTU

members. It is less clear why MY2, forecasting 68.9% of its

QPF as graupel, followed closely to LIN, seeing as there was

no consideration of graupel and snow collisions and the

member had a PSD intercept parameter that matched the

value of 4.03 106 m24 as in WSM6, WDM6, and GCE. Since

there are differences in these microphysical models that

extend beyond the representation of graupel, there were

likely processes occurring in other hydrometeors that led to

cascading effects on graupel. For example, graupel is present in

the AHM-DEM15 simulations because the choice of ice nu-

cleation parameterization from DeMott et al. (2015) initiated

less pristine cloud ice, allowing for the simultaneous growth of

ice and cloud droplets, eventually leading to riming processes

(Gaudet et al. 2019). Implementation differences that can lead

to considerable changes in mass transfer and ultimately govern

precipitation type are important to keep in mind when com-

paring model output that make use of different microphysics

schemes, such as those in this paper.

b. Precipitation type verification and effects

Precipitation type was classified at the surface by means of

Meteorological Terminal Aviation Routine Weather Report

(METAR) codes recorded by the MIPS disdrometer. During

IOP4, the following METAR codes were recorded: light,

moderate, and heavy snow (2SN, SN, and1SN, respectively),

light and heavy soft hail (2GS and 1GS, respectively), mod-

erate hail (GR), light and heavy drizzle with rain (2RADZ

and 1RADZ, respectively), and light, moderate, and heavy

drizzle (2DZ, DZ, and 1DZ, respectively). Subcategories of

hydrometeors and their respective intensities weremerged into

larger groups; snow combines 2SN, SN, and 1SN, graupel

includes 2GS,1GS, and GR, and rain accounts for 2RADZ,

1RADZ, 2DZ, DZ, and 1DZ. Between 2127 UTC 15

December and 0657 UTC 16 December, the report count of

each code was summed and added to their respective major

hydrometeor group. The counts were weighted by the precip-

itation intensity of each major category, effectively calculating

the amount of precipitation each hour while removing the as-

sumption that all hydrometeor categories are contributing to

the accumulation equally. The percent contribution of each

hydrometeor category was computed for the disdrometer ob-

servations during the aforementioned period and for each of

the ensemble members during the time period of 2100 UTC

15December–0600UTC 16December (Table 4). According to

the recordedMETAR codes, 92% of precipitation observed at

the MIPS site (Fig. 1b) was snow and ice, with a 5% contri-

bution from graupel and the remaining 3% from rain and

drizzle. With the exception of NTU-FRFS, NTU members

stray the furthest from observations, with forecasts of snow and

ice ranging from 5% to 18%, an exorbitant graupel forecast

from 82% to 95%, and rain and drizzle ranging from 0% to 1%.

The NTU scheme defines snow as pure aggregates and graupel

as rimed ice, in that rimed ice may contain rimed snow while

larger pristine ice is what other schemes traditionally define as

snow. This may serve to inflate the graupel contributions in

most NTU members. GCE, LIN, MY2, WDM6, WSM6, and

AHM-DEM15members also produce an aggressive amount of

graupel at theMIPS site (Table 4), ranging from 29% (WDM6)

to 100% (LIN) of the total accumulation, for reasons discussed

earlier in this section. Ensemble members providing a solution

closer to observations included AHM-MEY92 members,

M2M, CAM, and THOM with snow contributions around

99%. While these amounts leave little room for graupel,

drizzle, and rain, they are far from the extremely unlikely

forecasts calling for an equal or dominant contribution from

graupel. However, NTU-FRFS best captured the relative

hydrometeor contributions, with a 90% forecast of snow,

TABLE 4. Percentage of total accumulations broken down by

precipitation type observed by the disdrometer and forecast by

each ensemble member. The disdrometer data are valid during

disdrometer observation period of 2127 UTC 15 Dec to 0657 UTC

16 Dec 2013 and the ensemble time period is valid during

2100 UTC 15 Dec to 0900 UTC 16 Dec 2013.

Label Snow and ice Graupel Rain and drizzle

Disdrometer 92.14 5.31 2.54

AHM-MEY92H 99.45 0.42 0.13

AHM-MEY92S 99.82 0.18 0.00

AHM-DEM15H 54.09 31.23 14.69

AHM-DEM15S 51.32 36.11 12.57

M2M 99.79 0.21 0.00

CAM 99.95 0.00 0.05

GCE 58.21 41.75 0.03

LIN 0.38 99.62 0.00

MY2 12.93 86.95 0.12

THOM 99.72 0.28 0.00

WDM6 71.39 28.61 0.00

WSM6 58.96 41.04 0.00

NTU-2SPH 11.99 87.57 0.44

NTU-SPH 11.33 87.89 0.77

NTU-FSI 10.94 89.04 0.03

NTU-FRFS 89.56 10.44 0.00

NTU-DEF 8.00 91.99 0.01

NTU-RFS 5.12 94.88 0.01

NTU-INH 8.94 91.05 0.00

NTU-INL 5.54 94.46 0.01

NTU-MAERO 7.64 92.30 0.06

NTU-PAERO 18.30 81.63 0.08

NTU-DSI 11.48 88.51 0.02

NTU-2TRAD 8.98 90.93 0.09
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10% forecast of graupel, and no prediction of rain and drizzle.

However, this member was also the one of the only NTU

members to have an RMSE above the median at both Sandy

Creek and North Redfield (Fig. 4). Though this analysis is a

point comparison due to the deployment of a single dis-

drometer, it is a step toward understanding surface precipi-

tation types. As the majority of these data were observed

while the LES convective core was to the north of the MIPS

site, the hydrometeor compositionmay not be fully representative

of that portion of the LES producing the greatest amount of

precipitation. This can lead to discrepancies among the fol-

lowing analyses, in which MIPS observations do not prompt

the same conclusions (e.g., LES only composed of snow and

ice) as domain-wide comparisons.

Additional understanding of the dominant hydrometeor

species accumulating at the surface stems from the joint

particle size–velocity distribution (Fig. 9a). However, un-

certainties within these disdrometer data exist due to obser-

vational noise, sampling effects, and assumptions about the

type of particles being sensed. While research shows these

uncertainties can be quantified for both snow (Battaglia et al.

2010) and rain (Jaffrain and Berne 2011) events, there is not a

standard for quantifying uncertainties for mixed-phase events

such as IOP4. Due to this unknown effect, uncertainties exist

within these disdrometer data but the actual quantity of

which is not accounted for in this work. The greatest number

of particles converge around diameters roughly at 1.5 mm and

fall speeds of 0.5m s21. The extension of a high incidence of

particles with diameters. 4mm may be skewed by the issues

of oversizing snow particles with an equivalent spherical

diameter , 2mm (Battaglia et al. 2010). Observations of

graupel tend to be in the tail of the fall velocity distribution

(.3m s21) but do not have much bearing on the total joint

distribution since they were infrequently observed. To fur-

ther understand the particles falling during the LES core

passage, which may be representative of some LES convec-

tive cores influencing areas east of Lake Ontario earlier in its

lifetime, a difference joint distribution normalized by the

average particle count during each respective time period was

calculated between 0600 and 0655 UTC (high intensity pre-

cipitation) and 0300–0400 UTC (low–moderate intensity

precipitation) 16 December (Fig. 9b). The latter period shifts

the joint distribution to faster velocities, which is hypothe-

sized to correspond well with potentially rimed particles

falling at faster speeds due to the precipitation intensification

during this time (Fig. 5a).

Both observed and simulated precipitation type mixtures at

the ground stem from in-cloud liquid–ice partitioning differ-

ences. The presence, or lack thereof, of certain species (e.g.,

liquid water) can alter remotely retrieved cloud location and

expanse due to properties such as particle density and com-

position. As an example of remotely sensed differences, point

probabilities of simulated horizontal reflectivity (ZH) .
15 dBZ interpolated to a 0.58 PPI scan in D03 at 0600 UTC

16 December are provided for both the entire ensemble

and each hydrometeor group and are compared to KTYX-

observed 15 dBZ contour in the 0.58 PPI scan in Fig. 10. AHM

and NTU members derive simulated ZH by means of the po-

larimetric radar operator developed by Ryzhkov et al. (2011)

while public members use ZH calculations provided by the

Python package WRF-Python (Ladwig 2017). To calculate

these probabilities at each grid point in D03, the number of

ensemble members with simulated ZH . 15 dBZ (NZH.15dBZ)

was divided by the total number of members in the ensemble,

(NZH.15dBZ)/24, or divided by the total in each respective hy-

drometeor group, (NZH.15dBZ)/(Nhgroup). The resulting value at

each grid point is considered to be the probability of that ZH

threshold being reached or surpassed and is contoured in Fig. 10.

Each hydrometeor group is well within the observed 15 dBZ

contour, but some differences exist among the relative LES

FIG. 9. Joint particle equivalent spherical diameter (mm) and velocity (m s21) distribution observed by the

disdrometer (a) aggregated during the time period of 0000–0657 UTC 16 Dec 2013 and (b) as a difference between

the time periods of 0600–0655 and 0300–0400 UTC. These data are normalized by the average particle count

observed during each respective time period before calculating the difference shown in (b).
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positioning. The western LES position is slightly to the south of

observations in SI and marginally to the north in SIGR.

Another interesting feature is the spatial expanse of the 50%

probabilities among the groups. SI filled 84.2% of the 15 dBZ

KTYX reflectivity contour, but that only comprised 51.3% of

the total area forecast to reach the 15 dBZ threshold. Similarly,

SIGR filled 83.4% of the observed contour, but that only

represented 46.1% of its vast forecast area; 59.3% of the ob-

served contour was filled by SIG, which accounted for 62.0%of

its total forecast area.While SIG does not surpass the 71.3% of

the observed contour that the entire ensemble forecast, it was

higher than the 60.8% of the observed portion of its total

forecast area. In both quantitative and qualitative lenses, en-

semble members in SIG best match the observations at this

time due to the less expansive radar echoes to the north and

south of the main LES. This confirms that the precipitation

type(s) (e.g., SI, SIG, SIGR; Fig. 8) within the cloud system

does have an influence on the spatial extent and location of the

LES, specifically when graupel and/or rain are prevalent.

While low-level KTYXPPI analysis provides an overview of

the system, the MIPS XPR can resolve details about the ver-

tical profile of reflectivity at the MIPS location, near-surface

(which is missed by KTYX) through cloud top. The vertical

geometry also provides an opportunity to parse the dynamic

vertical structure. The IQR of hourly Ze data $ 25 dBZe ob-

served by the XPR is provided in Fig. 11. Note that since the

LES is mixed phase, X-band attenuation of any liquid present

in the cloud impact these Ze data. However, any attenuation is

likely minimal given that the sensible precipitation is primarily

frozen. During the majority of the LES lifetime, there is an

FIG. 10. Point probabilities of Zh . 15 dBZ interpolated to the 0.58 PPI scan strategy at KTYX at 0600 UTC 16

Dec 2013 for (a) all simulations (N5 24), as well as simulations that produce (b) snow and ice (N5 7), (c) snow, ice,

and graupel (N 5 15), and (d) snow, ice, graupel, and rain (N 5 2). Superimposed on each panel is the KTYX-

observed 15 dBZ contour (black) at the 0.58 PPI scan and 50% point probability contour (cyan).
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increase in Ze with increasing proximity at varying levels near

the surface (0.5–1 km), suggesting hydrometeor growth, fol-

lowed by a decrease in Ze toward the surface (Figs. 11a–h)

suggesting sublimation/evaporation. Between 0500 and 0650

UTC (Figs. 11i,j) there is a pronouncedZe signaturemaximizing

at approximately 2 km, followed by a sharp decrease near 1.5 km

between 0500 and 0600 UTC (Fig. 11i). Discussion of how these

Ze data compare to process rates leading to particle growth and

decay within the ensemble is provided in the online supple-

mental materials. The increased altitude at which the maximum

Ze is found during 0500–0650 UTC emanates from the colloca-

tion of the MIPS deployment site (Fig. 5d) and the relatively

intense LES convective core at the end of its lifespan. However,

theZe decrease near 1.5 km in Fig. 11i is an artifact of the hourly

time intervals; it exists solely because of the arrival of the LES

core slightly before 0600UTC. The level of maximumZe during

0500–0650 UTC corresponds with that of the largest radial ve-

locity observed during IOP4, 5m s21 (not shown). Therefore,

hydrometeor lofting is suggested by the collocation of strong

radial velocities, considerably increasedZe especially at relatively

higher altitudes, and a decrease of Ze below due to hydrometeor

displacement.

6. Microphysical features

Now that an understanding of surface precipitation type has

been established, it will be helpful to explore liquid–ice parti-

tioning within the cloud through remote and in situ observa-

tions. Analysis of both observed DOW7 and PVM data as well

as concurrent comparison to the ensemble will allow for key

inferences to be made.

a. DOW7 polarimetric data analysis and comparison

Polarimetric data collected by DOW7 (situated on the

southeastern shore of Lake Ontario, Fig. 1b) during a majority

of the LES lifetime allowed for cross-band analysis via 08

azimuthal cross sections. To efficiently evaluate more than one

analysis time, CFADswere computed from these cross sections

at 30-min intervals during 0000–0600 UTC 16 December.

Forward simulation of polarimetric variables (Ryzhkov et al.

2011) was only completed for the AHM-MEY92H and AHM-

DEM15H simulations due to the availability of hydrometeor

shape information required for computation of polarimetric

variables, such as differential phase shift (KDP), differential

reflectivity (ZDR), and correlation coefficient (rhv).

Much like the XPR (Fig. 11), the DOW7 CFAD in Fig. 12a

indicates an increase of ZH with decreasing altitude to ap-

proximately 1 km, which is a classic signature of hydrometeor

growth. This is followed by a decrease inZH in the lowest 1 km,

which may be a result of hydrometeor lofting or sublimation.

At each altitude below 3 km, the upper range of reflectivity

values in AHM-MEY92H (Fig. 12b) matches best to the

DOW7 CFAD. Meanwhile, AHM-DEM15H (Fig. 12c) simu-

lates ZH values close to double those observed in the 0–3 km

layer. Through calculation of the individual contributions of

ice, snow, graupel, and rain to the simulation of horizontal

reflectivity for both AHM-MEY92H and AHM-DEM15H, it

was found that the higher-end ZH field simulated by AHM-

MEY92H is most impacted by snow and ice, whereas the sig-

nature of ZH . 20 dBZ simulated by AHM-DEM15H is

dominated by snow and graupel.

Observed KDP frequencies center around 08 km21, but ex-

tend to larger positive and negative values throughout the

profile (Fig. 12d). The KDP values of 08 km21 imply that a

differential phase shift did not occur in the presence of

spherical particles while positive (negative) KDP values indi-

cate that the horizontal (vertical) phase shift is larger than

the vertical (horizontal), indicative of nonspherical particles.

AHM-MEY92H has frequencies ofKDP extending past 28 km
21

in the 1–3 km layer due to the presence of oblate and prolate ice

crystals (Fig. 12e). In the 0–1 km layer, these frequencies start to

decrease in magnitude likely due to aggregation scavenging

FIG. 11. The interquartile range (shaded gray area) and median effective reflectivity (dBZe, solid black line) measured by the XPR are

plotted at each height and hourly interval between 2132UTC 15Dec and 0650UTC 16Dec 2013 forZe$25 dBZe. Each panel represents

XPR data from the time periods of (a) 2132–2200, (b) 2200–2300, (c) 2300–0000, (d) 0000–0100, (e) 0100–0200, (f) 0200–0300, (g) 0300–

0400, (h) 0400–0500, (i) 0500–0600, and (j) 0600–0650 UTC.
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FIG. 12. CFADs of polarimetric radar variables, including (a)–(c) horizontal reflectivity, (d)–(f) differential phase

shift, (e)–(i) differential reflectivity, and (j)–(l) correlation coefficient for (left) DOW7, (center) AHM-MEY92H,

and (right) AHM-DEM15H simulations. All CFADs were produced at 30-min intervals during 0000–0600 UTC

16 Dec.
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these crystals, moving them to the snow category,which does not

consider shape. Within AHM-DEM15H, KDP values are cen-

tered at 08 km21 throughout the 0–5 km layer (Fig. 12f) since

quasi-spherical ice crystals were prominent (not shown), re-

sulting in a negligible phase shift.

DOW7 ZDR primarily ranges from 0 to 1 dB up to 2 km with

some less frequently observed positive and negative values

throughout the lowest 4 km layer (Fig. 12g). Note that due to

the relatively low modal reflectivity (Fig. 12a), the ZDR data

(Fig. 12g) are less reliable and potentially dominated by noise,

therefore resulting in too high of a frequency near 0 dB.

Observations above 3km suggest low concentrations of aspherical

particles while increased frequencies of 0dB below this level are

indicative of these aspherical particles aggregating efficiently.

Generally, aggregation serves to decrease the exaggerated dif-

ference between the horizontal and vertical dimension of the

aggregate snow particle (Przybylo et al. 2019), moving the dif-

ferential reflectivity closer to 0dB.However, graupel particles can

also produce ZDR ranging from 20.5 to 1–2dB (Straka et al.

2020). Within AHM-MEY92H, a primary concentration around

0dB exists in the lowest 2 km, but larger frequencies of values up

to 6dB are present, primarily in the lowest 4km (Fig. 12h). This

suggests the considerable presence of aspherical ice particles that

have a greater horizontal backscatter. AHM-DEM15H has too

large of a frequency ofZDR near 0 dB above 3km, but it does not

present the issue of relatively large frequencies of high ZDR near

the surface (Fig. 12i). Also, both simulations produceZDR, 0dB

above 2km, which better represents observations. Finally, note

that AHM-DEM15H concurrently shows high ZDR and KDP

around 08 km21. This is possible due to the different dependencies

of these polarimetric variables; ZDR could be responding to a

small concentration of aspherical particles which would not be

large enough for an appreciable KDP signal.

Lower frequencies of observed rhv extend down to 0.90, with

higher frequencies clustered roughly above 0.98 in the lowest

1 km layer (Fig. 12j). Extending to the 1–4 km layer yields rhv.

0.98. Therefore, hydrometeors sensed by the DOW are rela-

tively homogeneous above 3 km and become increasingly

varied toward the surface. The overwhelming presence of snow

and ice observed by the disdrometer (Table 4) fits well with the

narrative of the DOW7 frequency of rhv in the lowest layer.

AHM-MEY92H has a wider rhv distribution due to the largely

ice-dominated cloud system it simulates (Fig. 12k). The greater

distribution of ice aspect ratios (not shown) results in a pop-

ulation of ice crystals of various habits that overtakes the

particle shape dependence of rhv. Through box model simu-

lations, Sulia and Kumjian (2017a) found that larger aspherical

ice concentrations can cause greater extremes in rhv, perhaps

explaining the breadth of the AHM-MEY92H distribution.

The highest frequencies of the AHM-DEM15H distribution

(Fig. 12l) are more narrowly concentrated to rhv . 0.95, re-

sembling the rightmost distribution of DOW7 (Fig. 12j). The

rhv values are closer to unity in AHM-DEM15H because, in

addition to the greater abundance of spherical rain, the modal

ice aspect ratio only varies between 0.1 and 1 (not shown).

However, the different hydrometeor composition in AHM-

DEM15H serves to decrease rhv.

Neither AHM-MEY92H nor AHM-DEM15H are fully

comparable to the DOW7 polarimetric observations as the

simulations tended to be on either extreme of the observations.

Considerable concentrations of aspherical ice in AHM-MEY92H

are likely causing strongKDP andZDR returns. Ifmore ice to snow

conversion through processes such as aggregation occurred within

AHM-MEY92H, the resulting KDP and ZDR fields may be more

comparable to observations.

b. PVM LWC analysis and comparison

For each ensemble member, LWC values . 2 gm23 at each

of the grid points with the same latitude, longitude, and height

of 11 UWKA flight legs perpendicular to the southern shore-

line of Lake Ontario were aggregated into distributions to

understand the range of liquid present in the cloud system

FIG. 13. (a) Box-and-whisker plots of LWC (gm23) measured by the UWKA PVM during 11 flight legs taking

place during 2312 UTC 15 Dec–0103 UTC 16 Dec 2013 and simulated by ensemble members at 0000 UTC 16 Dec

2013. Each box extends from the lower to upper quartiles, has a horizontal line at the median value, includes

whiskers to show the maximum and minimum values, and circles to represent outliers beyond 61.5 3 IQR, if

applicable. The percentages over each box-and-whisker plot represent the percentage of LWC observations or

forecasts in all of the 11 flight legs that are included in the analysis after filtering. (b) IOP4 UWKA flight and

innermost domain topography in a three-dimensional space. The highlighted orange segments and accompanying

orange annotations indicate the flight leg locations and numbers (1–11) at which the displayed data were observed.

Note that some flight legs overlap multiple times.
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(Fig. 13a). The 0000 UTC 16 December output is used for this

analysis as it is closest to the UWKA flight time. The PVM

LWC data were resampled for each flight leg to compare a

similar amount of data to the ensemble forecast LWC data.

Resampling time was calculated by dividing the ensemble

member grid spacing along the simulated flight path by the

average UWKA airspeed along that flight path. Throughout

the 11 flight paths spanning approximately three altitudes and

legs (Fig. 13b), the PVM measures LWC ranging from 2.24 3
1023 to ;4.94 3 1021 gm23. LWC within this range was

measured 73% of the time during its operation on the flight

legs. Simulated LWC values below the lower PVM measure-

ment threshold (2 3 1023 gm23; Gerber 2003) are ignored

(Fig. 13a); 79% of ensemble members simulated a median

within the observed IQR. Five of these members (MY2, NTU-

2SPH, NTU-FSI, NTU-PAERO, NTU-2TRAD), all of which

are in the SIG group, have distributions that extend outside of

the observed IQR. As these members best simulated the per-

sistence of LWC, it is likely that this presence of LWC allowed

for graupel production to occur. Note that not all SIGmembers

are comparable to the observed LWC distribution, meaning

that graupel production was likely not as zealous as those

forecasts suggest. This comparison to observations encapsu-

lates the difficulty of fully capturing the liquid–ice partitioning

in the cloud system.

As in Garvert et al. (2005) and Morrison et al. (2015),

comparisons are made between the observed and average

LWC for each of the 11 flight legs to delve into the variation of

LWC (Fig. 14). These model data are not imposed with the

lower limit of 2 3 1023 gm23 so that it is easier to see which

members produced LWC and allowed its persistence during

each flight leg. The average flight altitudes were 2.83 km for

flight legs 1–3, 3.12 km for legs 4–6, 1.69 km for legs 7–9, and

1.68 km for legs 10–11. The observations on the top row of

Fig. 14 indicate that the average LWC is of similar magnitude

during the first five flight legs, around 2.9 3 1021 gm23. Flight

leg 6 did not have any observations .2 3 1023 gm23, which

was likely due to the combined effect of the aircraft flying

slightly above the cloud top and the flight leg located the fur-

thest inland of those included in this analysis. LWC values

decreased by an order of magnitude at the flight levels of 1.69

and 1.68 km, ranging from 2.413 1022 to 6.743 1022 gm23 in

flight legs 9 and 8, respectively. As with Fig. 13, each of the

ensemble members represents the observed LWC to a differ-

ent extent and interesting new details are elucidated by Fig. 14.

On average, legs 1–3 were simulated approximately one order

of magnitude less than observations. The ensemble members

with LWC present did not adequately capture the highest

LWC values in flight legs 4 and 5 due to the altitude increase,

which was not well resolved at this time in the ensemble. LWC

was absent from nine members during leg 4 and 12 members

during leg 5. Only leg 7 was well simulated by almost the entire

ensemble, except for NTU-FRFS and both AHM-MEY92

members. AHM-MEY92S does not allow for LWC persis-

tence due to its abundance of frozen hydrometeors (Fig. 8).

However, LWC does persist in AHM-MEY92H specifically in

the lower altitude flight legs 8–10. The AHM-DEM15 mem-

bers allow for greater persistence of LWC, but still forecast up

FIG. 14. Heat map of average observed and simulated LWC for the 11 flight legs analyzed in Fig. 13. Flight legs are represented on the x

axis, with (top row) UWKA PVM observations, (second row) the ensemble mean LWC, and (remaining rows) the average LWC values

for each ensemblemember along the same flight path at 0000 UTC 16Dec 2013. Values are annotated on each box of the heat map. Gray-

filled boxes indicate a lack of observed or simulated LWC values .0 gm23.
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to one order of magnitude less LWC in legs 1–3, are on par with

leg 7, and again produce up to four orders of magnitude less

LWC in legs 8–11. With the exception of CAM and MY2

during flight legs 1 and 2, all public members either produce far

too little or no LWC. CAM, GCE, LIN, and MY2 compare

much better to observations during the lower-altitude flight

legs 7–11. With the exception of NTU-FRFS, NTU members

are able to resolve LWC for flight legs 1–3 and 7–11, but do not

systematically over or under produce LWC, except for at the

highest flight levels (flight legs 7–9). Amajority ofNTUmembers

allow enough in-cloud persistence of LWC to be comparable to

the observations, which is notable considering their under-

performance in the precipitation-type comparative analysis.

7. Conclusions

A 24-member microphysical ensemble was built from mul-

tiple microphysics schemes available within WRF v3.7.1 and

two bulk adaptive habit models, each with varied parameters

and representations of physical processes within, including

aerosol and potential ice nuclei concentrations, ice nucleation

parameterizations, rain and ice fall speeds, spectral indices, ice

habit assumptions, and two- or three-moment methods of

modeling ice-phase hydrometeors. The ensemble was used to

investigate microphysical characteristics and resultant precip-

itation observed during OWLeS IOP4 with operational and

research radar observations as well as in situ surface and air-

craft observations. The eight simulations using publicly avail-

able microphysics schemes and the 12 members using a bulk

adaptive habit model were run at National Taiwan University

(NTU). The remaining four simulations using a different bulk

adaptive habit model were run at the University at Albany,

SUNY (UA). For this reason, a machine difference was

conducted for one of these simulations at both UA and NTU.

The analysis determined existing differences between these

simulations to be negligible, giving credence to continue us-

ing the other ‘‘remotely’’ simulated ensemble members.

The 24-h QPF valid at 1200 UTC 16 December 2013 of each

ensemble member was statistically compared to those of the

remaining ensemble members to assess the present forecast

spread and member intercomparison. The RMSE of each

member was also investigated to assess the ensemble accuracy

at Sandy Creek and North Redfield, New York. Almost all

NTU members except for NTU-FRFS resulted in lower fore-

cast errors than most ensemble members at Sandy Creek and

errors below the median at North Redfield.

Several remote and in situ observations were analyzed to

stitch together the in-cloud microphysical processes and sur-

face precipitation. Analysis of MRR data suggest particle

growth and/or aggregation at all four sites as well as increased

downward hydrometeor vertical motion with increasing prox-

imity to Lake Ontario due to increased riming. Collectively,

the ensemble was able to detect areas highly impacted by

precipitation as well as correctly simulate LES morphology.

The ensemble tended to produce a QPF with two maxima, but

only one directly east of Lake Ontario was observed.

The most intriguing result was the various mixtures of hy-

drometeor types that were forecast to accumulate at the

surface: 7 members produced snow and ice, 15 produced snow,

ice, and graupel, and 2 forecast snow, ice, graupel, and rain. A

disdrometer stationed south of the convective core for the

majority of the LES lifetime predominantly observed snow,

with,8% attributed to graupel and/or rain. As the convective

core passed over the MIPS deployment site, the disdrometer

detected increased fall velocities of larger hydrometeors, as

indicated by its PSDs and joint-distributions of equivalent

spherical diameter and fall velocity. Within the ensemble,

graupel was either grossly overforecast (AHM-DEM15H,

AHM-DEM15S, GCE, LIN, MY2, WDM6, WSM6, and all

NTU members except NTU-FRFS) or underforecast (AHM-

MEY92H, AHM-MEY92S,M2M, CAM, THOM,NTU-FRFS)

during the LES event. The same ensemble members that did not

predict enough graupel as compared to the disdrometer obser-

vations also forecast the most snow. Ensemble members fore-

casting SI and SIGR increased the areal coverage of the

simulated radar reflectivity in D03, thereby slightly changing the

locales affected by precipitation.

The signature of hydrometeor growth and/or aggregation ob-

served in the MRR data was also present in the XPR effective

reflectivity data. Near the peak intensity of the LES theXPR data

showed considerable variability in the vertical, suggesting lofting

via strong upward vertical motion, decreasing effective reflectivity

in the low levels and increasing effective reflectivity aloft due to

the upward flux of hydrometeor mass. Earlier XPR CFAD sig-

natures are confirmed by DOW7 reflectivity vertical profiles,

which are similarly compared to the forward operator-simulated

polarimetric quantities of AHM-MEY92H (SI) and AHM-

DEM15H (SIGR). This analysis elucidated the ability of both

simulations to capture some of the observed polarimetric signa-

tures, but neither was fully representative of the observations.

Last, in situ LWC data from 11 UWKA flight legs were

compared to the LWC in the ensemble, demonstrating the

ability of some SIG members to model LWC distributions

comparable to observations. The ensemble members struggle

to capture the variability of these LWCdata during the first five

flight legs, but resolve the lack of LWC in the sixth. Some

public members and the majority of NTUmembers are able to

model LWCon the order of the observedmagnitude during the

final five flight legs.

Processes that directly (through parameterizations) or in-

directly affect the creation or growth (e.g., riming) of graupel

lead to hydrometeor type differences within the ensemble. The

NTUmicrophysics scheme was most sensitive to the change of

ice fall speed parameterization (NTU-FRFS), as use of the

empirical size relation reduced riming rates, allowing for in-

cloud persistence of snow and ice and depletion of LWC. This

resulted in a poor comparison to in-cloud observations and 3-h

QPF, but the best ensemble member comparison to precipita-

tion type as observed by the MIPS disdrometer. The remaining

NTU members were relatively insensitive to the changes made

within the scheme, which resulted in forecasts of SIG and did not

negatively affect the RMSE, as this group provided some of the

lowest RMSE at both Sandy Creek and North Redfield.

Additionally, the faster ice fall speeds indirectly resulted in

LWC magnitudes that were on par with observations. Public

schemes provided numerous forecast differences due to
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different numbers of moments, parameters and parameteriza-

tion choices, and hydrometeor definitions. This led to a wide

range of RMSE, resulting in both the lowest and highest RMSE

at North Redfield. These members forecast either SI or SIG;

those forecasting SI have poor LWC persistence compared to

observations, while members forecasting SIG perform slightly

better. Finally, AHM-MEY92members produced greater RMSE

at both locations and poor representation of LWC due to their

forecasts of SI. AHM-DEM15 members have lower RMSE at

both locations due to their forecasts of SIG, allowing LWC

magnitudes to be more comparable to observations.

This work has identified considerable sensitivities of in-

cloud hydrometeor partitioning extending to surface precipi-

tation type during a cold-season event, as a direct result of

microphysical processes in bulk models. Ensemble difficulty in

correctly diagnosing hydrometeor type for IOP4 had implica-

tions on remote sensing of cloud LWC and precipitation

magnitude, among other characteristics, contributing to the

forecast spread. However, comparisons to remote and in situ

observations indicated that at times the ensemble was able to

capture some characteristics (e.g., spatial, microphysical) of

the storm. Even slight changes or seemingly minute choices

made within the bulk microphysical models that comprise this

ensemble had considerable impacts on this LES forecast.
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